Copied to
clipboard

G = C28.21C42order 448 = 26·7

14th non-split extension by C28 of C42 acting via C42/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.21C42, C23.3Dic14, (C2×C56).3C4, (C2×C4).15D28, (C2×C8).3Dic7, C7⋊(C4.10C42), (C2×C28).113D4, C4.26(C4×Dic7), C4.36(D14⋊C4), (C22×C14).9Q8, (C22×C4).65D14, C28.12(C22⋊C4), (C2×M4(2)).11D7, C4.20(C23.D7), (C14×M4(2)).15C2, C22.7(Dic7⋊C4), C22.11(C4⋊Dic7), (C22×C28).129C22, C2.19(C14.C42), C14.19(C2.C42), (C2×C7⋊C8).3C4, (C2×C28).66(C2×C4), (C2×C4).143(C4×D7), (C2×C14).10(C4⋊C4), (C2×C4).23(C7⋊D4), (C2×C4).78(C2×Dic7), (C2×C4.Dic7).14C2, SmallGroup(448,117)

Series: Derived Chief Lower central Upper central

C1C28 — C28.21C42
C1C7C14C28C2×C28C22×C28C2×C4.Dic7 — C28.21C42
C7C28 — C28.21C42
C1C4C2×M4(2)

Generators and relations for C28.21C42
 G = < a,b,c | a28=1, b4=c4=a14, bab-1=a13, ac=ca, cbc-1=a21b >

Subgroups: 260 in 86 conjugacy classes, 47 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C2×C8, C2×C8, M4(2), C22×C4, C28, C28, C2×C14, C2×C14, C2×C14, C2×M4(2), C2×M4(2), C7⋊C8, C56, C2×C28, C2×C28, C22×C14, C4.10C42, C2×C7⋊C8, C4.Dic7, C2×C56, C7×M4(2), C22×C28, C2×C4.Dic7, C14×M4(2), C28.21C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C4.10C42, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C14.C42, C28.21C42

Smallest permutation representation of C28.21C42
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 61 8 68 15 75 22 82)(2 74 9 81 16 60 23 67)(3 59 10 66 17 73 24 80)(4 72 11 79 18 58 25 65)(5 57 12 64 19 71 26 78)(6 70 13 77 20 84 27 63)(7 83 14 62 21 69 28 76)(29 102 50 95 43 88 36 109)(30 87 51 108 44 101 37 94)(31 100 52 93 45 86 38 107)(32 85 53 106 46 99 39 92)(33 98 54 91 47 112 40 105)(34 111 55 104 48 97 41 90)(35 96 56 89 49 110 42 103)
(1 38 8 45 15 52 22 31)(2 39 9 46 16 53 23 32)(3 40 10 47 17 54 24 33)(4 41 11 48 18 55 25 34)(5 42 12 49 19 56 26 35)(6 43 13 50 20 29 27 36)(7 44 14 51 21 30 28 37)(57 110 78 103 71 96 64 89)(58 111 79 104 72 97 65 90)(59 112 80 105 73 98 66 91)(60 85 81 106 74 99 67 92)(61 86 82 107 75 100 68 93)(62 87 83 108 76 101 69 94)(63 88 84 109 77 102 70 95)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,61,8,68,15,75,22,82)(2,74,9,81,16,60,23,67)(3,59,10,66,17,73,24,80)(4,72,11,79,18,58,25,65)(5,57,12,64,19,71,26,78)(6,70,13,77,20,84,27,63)(7,83,14,62,21,69,28,76)(29,102,50,95,43,88,36,109)(30,87,51,108,44,101,37,94)(31,100,52,93,45,86,38,107)(32,85,53,106,46,99,39,92)(33,98,54,91,47,112,40,105)(34,111,55,104,48,97,41,90)(35,96,56,89,49,110,42,103), (1,38,8,45,15,52,22,31)(2,39,9,46,16,53,23,32)(3,40,10,47,17,54,24,33)(4,41,11,48,18,55,25,34)(5,42,12,49,19,56,26,35)(6,43,13,50,20,29,27,36)(7,44,14,51,21,30,28,37)(57,110,78,103,71,96,64,89)(58,111,79,104,72,97,65,90)(59,112,80,105,73,98,66,91)(60,85,81,106,74,99,67,92)(61,86,82,107,75,100,68,93)(62,87,83,108,76,101,69,94)(63,88,84,109,77,102,70,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,61,8,68,15,75,22,82)(2,74,9,81,16,60,23,67)(3,59,10,66,17,73,24,80)(4,72,11,79,18,58,25,65)(5,57,12,64,19,71,26,78)(6,70,13,77,20,84,27,63)(7,83,14,62,21,69,28,76)(29,102,50,95,43,88,36,109)(30,87,51,108,44,101,37,94)(31,100,52,93,45,86,38,107)(32,85,53,106,46,99,39,92)(33,98,54,91,47,112,40,105)(34,111,55,104,48,97,41,90)(35,96,56,89,49,110,42,103), (1,38,8,45,15,52,22,31)(2,39,9,46,16,53,23,32)(3,40,10,47,17,54,24,33)(4,41,11,48,18,55,25,34)(5,42,12,49,19,56,26,35)(6,43,13,50,20,29,27,36)(7,44,14,51,21,30,28,37)(57,110,78,103,71,96,64,89)(58,111,79,104,72,97,65,90)(59,112,80,105,73,98,66,91)(60,85,81,106,74,99,67,92)(61,86,82,107,75,100,68,93)(62,87,83,108,76,101,69,94)(63,88,84,109,77,102,70,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,61,8,68,15,75,22,82),(2,74,9,81,16,60,23,67),(3,59,10,66,17,73,24,80),(4,72,11,79,18,58,25,65),(5,57,12,64,19,71,26,78),(6,70,13,77,20,84,27,63),(7,83,14,62,21,69,28,76),(29,102,50,95,43,88,36,109),(30,87,51,108,44,101,37,94),(31,100,52,93,45,86,38,107),(32,85,53,106,46,99,39,92),(33,98,54,91,47,112,40,105),(34,111,55,104,48,97,41,90),(35,96,56,89,49,110,42,103)], [(1,38,8,45,15,52,22,31),(2,39,9,46,16,53,23,32),(3,40,10,47,17,54,24,33),(4,41,11,48,18,55,25,34),(5,42,12,49,19,56,26,35),(6,43,13,50,20,29,27,36),(7,44,14,51,21,30,28,37),(57,110,78,103,71,96,64,89),(58,111,79,104,72,97,65,90),(59,112,80,105,73,98,66,91),(60,85,81,106,74,99,67,92),(61,86,82,107,75,100,68,93),(62,87,83,108,76,101,69,94),(63,88,84,109,77,102,70,95)]])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A8B8C8D8E···8L14A···14I14J···14O28A···28L28M···28R56A···56X
order122224444477788888···814···1414···1428···2828···2856···56
size1122211222222444428···282···24···42···24···44···4

82 irreducible representations

dim1111122222222244
type++++-+-++-
imageC1C2C2C4C4D4Q8D7Dic7D14C4×D7D28C7⋊D4Dic14C4.10C42C28.21C42
kernelC28.21C42C2×C4.Dic7C14×M4(2)C2×C7⋊C8C2×C56C2×C28C22×C14C2×M4(2)C2×C8C22×C4C2×C4C2×C4C2×C4C23C7C1
# reps1218431363126126212

Matrix representation of C28.21C42 in GL4(𝔽113) generated by

81000
08100
250530
250053
,
450400
001121
620680
9115680
,
14000
9011200
4468015
06810
G:=sub<GL(4,GF(113))| [81,0,25,25,0,81,0,0,0,0,53,0,0,0,0,53],[45,0,62,91,0,0,0,15,40,112,68,68,0,1,0,0],[1,90,44,0,40,112,68,68,0,0,0,1,0,0,15,0] >;

C28.21C42 in GAP, Magma, Sage, TeX

C_{28}._{21}C_4^2
% in TeX

G:=Group("C28.21C4^2");
// GroupNames label

G:=SmallGroup(448,117);
// by ID

G=gap.SmallGroup(448,117);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,387,184,1123,136,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^4=c^4=a^14,b*a*b^-1=a^13,a*c=c*a,c*b*c^-1=a^21*b>;
// generators/relations

׿
×
𝔽